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Synopsis )

Coexistent steady-state solutions to a Lotka-Volterra model for two freely-dispersing competing
species have been shown by several authors to arise as global secondary bifurcation phenomena. In
this paper we establish conditions for the existence of global higher dimensional n-ary bifurcation in
general systems of multiparameter nonlinear eigenvalue problems which preserve the coupling
structure of diffusive steady-state Lotka—Volterra models. In establishing our result, we mainly
employ the recently-developed multidimensional global multiparameter theory of Alexander—
Antman. Conditions for ternary steady-state bifurcation in the three species diffusive competition
model are given as an application of the result.

1. Introduction

Multiparameter bifurcation theory is a topic of considerable current interest. One
of its more natural applications is to coupled systems of semilinear elliptic
boundary value problems in which more than one parameter appears. For
example, consider the system

—Au=u[a—u—cv]} O 11
~Av=v[d—eu—v]) " (1)
u=0=v ondQ, (1.2)

where Q is a bounded domain with sufficiently smooth boundary Q2 and A is the
Laplacian operator. Suppose that a, d, ¢, and e are positive numbers. Then
nonnegative solutions to (1.1)-(1.2) can be viewed as representing steady-state
population densities for a Lotka—Volterra competing species model with
diffusion. The parameters a and d may be viewed as growth rates, while ¢ and e
account for the competitive interaction of the species.

The system (1.1)—(1.2) has been widely studied of late; see, for example, [2],
[3], [5], [6], and [7] and the references therein. Several authors ([2], [3], [5]),
have observed that solutions to (1.1)—(1.2) which are positive in both components
(the so-called coexistence states) arise as bifurcations from solutions which are
positive in one component and trivial in the other (extinction states). The
extinction states themselves arise as bifurcations from the zero solution, and so a
secondary bifurcation phenomenon occurs. Blat and Brown in [2] demonstrate
that if ¢ and e are held fixed and a > A, (the first eigenvalue for —A on the
domain Q subject to zero Dirichlet boundary conditions) is fixed, and if d is
allowed to vary, this secondary bifurcation phenomenon is global in an




114 Robert Stephen Cantrell

appropriate sense. The proof of this fact in [2] has two elements. The first is the
observation that the boundary value problem

(-A+gu=au—u*> inQ, (1.3)
u=0 ondQ, 1.4
has at most one positive solution. Furthermore the map g—> u(g) defined by

u(g) = {the unique positive solution to (1.3)—(1.4) if it exists,
&)= 0 otherwise,

is continuous from C*(Q) to C*(Q). This observation allows Blat and Brown to
reduce (1.1)—(1.2) to the single equation

[—A + eu(0)]v = dv — e[u(cv) — u(0)Jv — v, (1.5)

to which the global bifurcation theory of Rabinowitz [8] may be applied.

Several observations should now be made. Firstly, the secondary bifurcation
phenomenon occurs because of the manner in which the system (1.1)-(1.2) is
coupled, and should be expected in other situations removed from the problem of
competing species models. Secondly, higher (i.e. “n-ary”) bifurcation phenomena
ought to occur in corresponding systems of n equations. Finally, the recent global
multidimensional bifurcation results (e.g. [1]) should apply to show that these
higher bifurcations are multidimensional.

The aim of this paper is to verify these observations. A straight-forward
extension of the results of Blat and Brown [2] would not seem to be a feasible
approach, even in the case of n competing species freely dispersing throughout a
bounded domain. The principal reason is that analogues to (1.3)-(1.4), for
example,

(—A+ ag)u=ufa — cv — u?
(—A+ Bg)v =v[d — eu — v?¥
u=0=v on Q, L7

are known sometimes to have more than one solution pair with both u and v
positive on Q [3]. The same comment holds for the results of Cantrell and Cosner
[3]. While the reformulation of (1.1)—(1.2) in the bifurcation analysis of [3] is
much more akin to the approach of this paper, the analysis in [3] is purely local.
No change of topological index is established, and the global results in [3] depend
on those in [2]. Furthermore, the results in [2] and [3] are not multidimensional in
the sense of [1], as all but one of the parameters are held fixed during the
analysis. Thus we shall proceed along lines somewhat different to those of [2] and
[3].

In Section 2, we give an abstract framework for systems of nonlinear
eigenvalue problems which include steady-state problems for competitive and
cooperative systems from mathematical ecology such as (1.1)-(1.2), and formu-
late hypotheses for higher bifurcation. We show that the structural requirements
of the Alexander—Antman theory are met, and show how to affect a change of
topological index. Finally, we conclude in Section 3 with some examples of

} in Q (1.6)
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ternary bifurcation in the steady-state problem for the three species Lotka-
Volterra competition model with diffusion.

2. Main result

Let E be a commutative real Banach algebra with proper subspace D, and let
il “ denote the norm of E. Let A;: D— E be an invertible linear operator with
A;' compact, i=1, ..., n. Consider the system of equations

Ay =Auy+uq . filuy, ..o, u,)

: (2.1)
A, = A, +uy, . (U, .., 0y).

We assume that A4,,...,4,€R, and for each i, 1Si=n, f: E"— E is twice
continuously differentiable, bounded (i.e. bounded sets are mapped to bounded
sets) and £(0, ..., 0)=0.

We now consider the global solution structure of (2.1). Observe that if
Ay, ..., A% 4, ul ..., ud_,) is a solution to the reduced system

Aguy=Auy+ug . iy, -, Uy, 0)
: (2.2)
An—lun—l = A’n——lun—l + un—l 'ﬁz—l(ul) « vy un——l’ O)!

then (A, ..., AS_ Ty ul, NP ul_1, 0) is a solution to (2.1) for any u € R.
Our main result may now be stated as follows.

THEOREM 2.1. Let V < R"™! be an open subset which is homeomorphic to R" ™.
Suppose there is a continuous map u: V—E" ' such that if A= (Ay, ..., Ap_y) €V
and u(A) = (ul, coos Uyoq), then (Aq, ..., Apqliy, ..., U,_y) satisfies (2.2) and
w,#0, i=1,...,n—1 Let W={(A, uA):AeV}. Suppose there is
(AL, . A, ul, .. ul ) e W such that A2+0, i=1,...,n—1 and such that

0 0 0 e
‘ﬂn——l(/‘l: ey n -1 ul; ) un—-l) -

: 3
e A’l ﬁ(ul, ey ug__l, 0) E "u(l). auﬁ (u(l), « .y ug_l, O)
! n-—1
a '
uO fl (ub I u(r)z 1 0)
Iuy

3fn1

a " 1( 1,...,149,_1,0)

_ug—l ( Uy ooy ug—l) 0) i ) —un 1-

-

and A, —f,ul, ..., ul_1,0) are invertible linear operators, on E*' and E,
respectively, with compact inverses. Suppose that u, is a characteristic value of
(A, —f(ul, ..., ud_1,0))™" of odd algebraic multiplicity. Then there is a con-
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tinuum € in R" X E" of solutions to (2.1) which has dimension greater than or
equal to n (see [1]) at every point. Moreover, € N (W xR X {0})#8 and if
W X R x {0} is viewed as the known or “trivial” sheet of solutions to (2.1), € is
global with respect to this sheet in the Cech cohomological sense of [1].
Furthermore, there is a neighbourhood V, of (A3, ..., A2_1) in V such that if A e V,
is fixed, there is a u(1) € R such that the corresponding restriction 6, of € meets
W xR{0} at {(As, ..., Au—1, u(A), u(A), 0)} and satisfies the global bifurcation
alternatives of Rabinowitz with respect to (A, u(A)) X R X {0}. In particular,
(A, ..., A2y, po, u(A%), 0) is such a point, and u(A)— uo as A— A°.

Remark. The Alexander—Antman Bifurcation Theorem [1] applies to equa-
tions of the form x=N(y, x)

where x € X, a real Banach space, y € 0, 0 an open subset of R” homeomorphic
to R”, and N: 0 X X— X is completely continuous and N(y, 0) =0. In order to
invoke the theorem, it then suffices to find parameter values y; and y,— neither
of which is a point of bifurcation from the trivial branch of solutions — for which
the Leray-Schauder indices ind (I — N(y,, .)), i =1, 2 are unequal. Our proof of
Theorem 2.1 is to verify this.

Proof. Let (A1, ..., Ape1, A) €V XR. Then (Ay, ..., Apoys Any Wi, ono, W)
eV X R X E" solves (2.1) exactly if

w; — u(A) = LAT (W — ui (1))

+AT(fiA), - - o5 uaa(D), 0) . (W — ui(A4)))
+A;1<21 ui(A) . g—f @A), - - ., Unea(A), 0) (W — u,.(x))>

2.3)
AT W fO0, W) =) SR, s a3, 0

—fi(wi(A), -+ 5 usma(D), 0) . (W~ ui())

n

3w L), s ), 00— 1)

j=1
i=1,...,n, where A=(Ay,..., A,-;), u,(A) is as in the hypotheses of Theorem
2.1, i<n and u,(A) =0. Let us now define N(Ay, ..., A, x) =LAy, ..., A)x +
H(Al, ey A.n, x) by

Li(ll: ey A’n)x = A'ifli—lxi +A;‘1(ﬁ(u1(l), sy un-—-l(l): 0) . xi)

AT (3 ) ), s s, 0) @)
and

H(hy, ..., Ay %) =A,-‘1[(x,- Fw(A) - fier+ a(R), - -, X+ 1 (A))

~w(4) . fi(wi(A), . . ., un—s(4), 0)
~fiui(A), . . s Una(D), 0) . x;

_él u;(4) . % wi(A), . .., uy_1(R), O)x,-],
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i=1,...,n, where x=(xy,...,x,) and A and u(A) are as in (2.3). Then it
follows that x =N(A,,..., A, x) exactly if (A, ..., A, x1+us(R), ..., x, +
u,(A)) solves (2.1). Moreover, the assumptions on f;, i =1, . . . , n guarantee that

fim H(Aq, o ooy Ay x)=
x>0 llxIl

0

uniformly for (4,, ..., A,) contained in compact sets. As V X R is homeomor-
phic to R”, we may complete the proof by showing that the Leray-Schauder
indices ind (I —N(A3, ..., AD_y, 1+ &), .)) and ind I = N(AS, ..., Ay, (1—
6) g, .)) are well-defined and unequal for 0 <6 « 1. To this end, it suffices to
show ind(I—L(AS, ..., A% 5, (1+8)ue) and ind(I—L(AS, ..., A%, (1—
&)uo)) are well-defined and unequal. Consider the system of equations
’ n—-1 3
X —~A1'1</11x1 + A, .. uloy, 0y + D ul. %(u‘l’, cee, US—g, O)x;
j=1 i

)
+sul. af,, @, ..., ul_, O)xn> =0
Xpn—1 _A;}-l("n—-lxn—l +ﬁ1—-1(ug: LR u?x—l’ O)xn—l > (25)

< 0 -1 0 0
+ Z u,l_l.'—_(ul,...,un_l).x]’
j=1 8u,~

of._ o

+sul_;. ngl @, ..., ul_,, O)x,,) =0

Xy — AT (L + 8)pox, + fu(ud, - . ., un_y, O)x,) =0, )

where 0=s < 1. The hypotheses on &,_;(A}, ..., A0_, ud,...,ul_)) and A, —

., ..., ul_, 0) guarantee that (2.5) has only the trivial solution x;=x,=
... =x, =0 for all s €[0, 1] provided ¢ is sufficiently small. Consequently

ind (I - L(A, . .., 29_,, (1 + 8)uo))

A-—l
:'_'indE”—1 (( ' . .A—l )o‘ﬂn-l(k(i‘: L) A'(r)z—l) u(l)) ] u?l-l))

n—1

(T~ AT A8, U, 0) = (14 O)pod;)

by the subspace reduction formula of degree theory. Now
indg (I — A7 (uS, - - ., uny, 0) — (1 + 8)poA")
=indg (I — A; Y (uy, ..., ud_1, 0)
cindg (I — (1 + 8)uo(l — A7Y, S, . . ., ud_s, 0))'A7Y)
by the multiplication rule. Since (I—A;Y%fS, ..., ul 1, 0) A =(4, —

fu@d, ..., ud_1,0)7", the theorem follows from the assumption that u, is a
characteristic value of odd algebraic multiplicity for (4, — f,(u3, ..., ud_4, 0))™%
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3. An illustration

Systems of multiparameter nonlinear eigenvalue problems of the form (2.1)
might reasonably be termed as nonlinearly diagonally dominant. Such systems, as
we have indicated in the introduction, are frequently related to problems in the
applications, especially mathematical biology. The aim of this article has been to
enhance understanding of the global solution structure to such problems. To this
end, Theorem 2.1 provides a regime for realising fully nontrivial solutions to such
systems as the result of n successive bifurcations, each of which gives rise to a
multidimensional sheet which is global in the Alexander—Antman sense to the
preceding sheet.

We shall now conclude this article by using Theorem 2.1 to demonstrate, as an
example, global ternary bifurcation in the steady-state solutions to the Lotka-
Volterra model for three competing species with diffusion. After an appropriate
normalisation, the system representing the steady-states is given by

- —Au = u[au - U= a1V — a13W]

—Av =vlay — apu —v — aypw] in Q,

3.1
—Aw = W[a31 — Al — 33U — W] ( )
u=v=w=_0 on 09,
uz0, vz0, w0 inQ. (3.2)

Here a;>0 for i,j=1,2,3. We view the normalised growth rates a; as
parameters, while viewing a;, j > 1 as being fixed.

Observe that (3.1) is of the form (2.1) with A; =A,=A;=—A, fi(u, v, w)=
—U— A,V —apw, f(u, v, w)=—apu—v—ayuw, and f, v, w)=—anu—
a3z3U — W. :

As noted in Section 1, secondary bifurcation has been shown to occur in the
reduced system

—~Au=ulay; —u— auv]} nQ
—Av =vay — apu —v] ’ 3.3)
u=y=J( on 9L2.

In particular, let us suppose that 0<a,, <1 and 0<a, <1 are fixed, and that
a;; = az > Ay, where A, is the first eigenvalue for the problem

~Az=Az inQ,
z={0 on 9Q.
1—ay, 1—ay .
Then u,,=-——"—80,, V,,=—§,, is a solution on the secondary
n_ 11 uq_ 1
1247, 1202,

branch of solutions to (3.3). In fact, it is the unique such solution at (a,;, ay;)
([31, [6]). (Here 6,,, denotes the unique positive solution to the problem

a11

—Az=a;z—2z%> inQ,
z=0 on 99Q.)
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We now verify that

i : 3 i
Al - all —.fl(uﬂn) Uan! 0) ; _.ua” M £ (uani Uau! 0)
of :
—Ug,, - —5;1 (thayys Vayyr 0) 5
SRR O S — (3.4)
o :
~Vay - —a_: (uﬂn’ Uays 0) E Az—ay '_fZ(uan:' Va0 0)
: of;
E Vs - 55(1"011’ Vay» 0)
and
As = f3(Ug,) Vayy, 0) (3.5)

have inverses which are compact operators on the Holder spaces [C§(Q)]* and
[C§(Q), 0 < a <1, respectively. Observe that (3.4) becomes

a4y ’

AV, —A+ 2'Ua“ + Ay lUg,,

while (3.5) yields
-A+ A3 Uq,, + QA33VUq,,- (3.7)

That (3.7) is invertible is a simple consequence of the maximum principle, since
A3oU,, + a33V,, is a nonnegative function on Q. The argument for (3.6) is
somewhat more involved. However, it is given in [4, Section 4] and so we shall
not repeat it. The observation that the first eigenvalue of (3.7) is necessarily
simple allows us to invoke Theorem 2.1.

Consequently, if a;; > A, is fixed and p, denotes the first eigenvalue of

(—A + asli,, +as3v,, )Y =pyp inQ }

P=0 on 09, (3-8)

then the continuum % guaranteed by Theorem 2.1 meets the aforementioned
secondary sheet of solutions at (a;;, @11, 1, Uay,» Vay,, 0). The character of the
points of 4 can be seen as follows. First, notice that though we have taken C8(Q)
as our underlying Banach algebra, € may be viewed as a subset of R’X
[CET(Q)]? by the regularity theory for elliptic partial differential equations. Now
let & denote {f € C5(Q): f(x)>0 on Q and 3f/dn(x) <0 on 3Q}. Then if a, is
fixed, solutions (a1, ayy, 4, 4, v, w) in € near (@i, @11, B1, Uay,s Vay» 0) With
w %0 are contained in &* and in ¥? X (—%). (The solutions in &> are precisely
the solutions to (3.1)—(3.2) we seek, while those in #* X (—%) may be viewed as
solutions to a related competitive-cooperative system, where w is replaced by —x
in (3.1).) Since an eigenfunction for (3.8) is necessarily in ¥ U (—%) and since
Uy, Vay, € , this local character of the solutions is a consequence of constructive-
simple eigenvalue bifurcation arguments of Crandall-Rabinowitz type (see [3,
Section 3]). Moreover, since ¥ is open in C§(Q), if (y1, Y2, V3, 4, v, w) € 4 for
some ¥i, Y2, ¥3>0 and (4, v, w) € ¥ or F* x (—%), so are all nearby solutions
to (3.1). On the other hand, if (&, v, w) € 3 or 3(F* x (—F)), the maximum
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principle guarantees that at least one of (u, v, w) is identically zero. Conse-
quently, elements of € remain in ¥* and ¥ X (—<) unless or until there is
bifurcation to a reduced system.

~N &N A
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